
quickdraw Documentation
Release 1.0.0

Martin O’Hanlon

May 16, 2023

Contents:

1 Getting started 3

2 Use 5

3 Examples 7

4 Documentation 9

5 Warning 11

6 Status 13

7 Table of Contents 15
7.1 quickdraw API . 15
7.2 Change log . 20

Python Module Index 23

Index 25

i

ii

quickdraw Documentation, Release 1.0.0

Quick Draw is a drawing game which is training a neural network to recognise doodles.

quickdraw is a Python API for accessing the Quick Draw data - it downloads the data files as and when needed,
caches them locally and interprets them so they can be used.

Created by Martin O’Hanlon (@martinohanlon, stuffaboutco.de).

Contents: 1

https://badge.fury.io/py/quickdraw
https://readthedocs.org/projects/quickdraw/
https://quickdraw.withgoogle.com/
https://quickdraw.withgoogle.com/data
https://github.com/martinohanlon
https://twitter.com/martinohanlon
http://stuffaboutco.de

quickdraw Documentation, Release 1.0.0

2 Contents:

CHAPTER 1

Getting started

Install the quickdraw python library using pip.

• Windows

pip install quickdraw

• macOS

pip3 install quickdraw

• Linux / Raspberry Pi

sudo pip3 install quickdraw

3

quickdraw Documentation, Release 1.0.0

4 Chapter 1. Getting started

CHAPTER 2

Use

Here are some examples of how to use quickdraw but be sure to also checkout the API documentation for more
information.

Open the Quick Draw data using QuickDrawData and pull back a drawing of an anvil.

from quickdraw import QuickDrawData
qd = QuickDrawData()
anvil = qd.get_drawing("anvil")

print(anvil)

quickdraw will download the anvil.bin data file and return the data for a random drawing of an anvil (well a
doodle of an anvil anyway).

Drawings are returned as QuickDrawing objects which exposes the properties of the drawing.

print(anvil.name)
print(anvil.key_id)
print(anvil.countrycode)
print(anvil.recognized)
print(anvil.timestamp)
print(anvil.no_of_strokes)
print(anvil.image_data)
print(anvil.strokes)

You can save the drawing using the image property.

anvil.image.save("my_anvil.gif")

You can save an animation of the drawing using the animation property.

anvil.animation.save("my_anvil_animation.gif")

5

https://quickdraw.readthedocs.io/en/latest/api.html
https://quickdraw.readthedocs.io/en/latest/api.html#quickdrawdata
https://quickdraw.readthedocs.io/en/latest/api.html#quickdrawing

quickdraw Documentation, Release 1.0.0

You can open a group of Quick Draw drawings using QuickDrawDataGroup passing the name of the drawing (“anvil”,
“aircraft”, “baseball”, etc).

from quickdraw import QuickDrawDataGroup

anvils = QuickDrawDataGroup("anvil")
print(anvils.drawing_count)
print(anvils.get_drawing())

By default only 1000 drawings are opened, you can change this by modifying the max_drawings parameter of
QuickDrawDataGroup, setting it to None will open all the drawings in that group.

from quickdraw import QuickDrawDataGroup

anvils = QuickDrawDataGroup("anvil", max_drawings=None)
print(anvils.drawing_count)

To iterate through all the drawings in a group use the drawings generator.

from quickdraw import QuickDrawDataGroup

qdg = QuickDrawDataGroup("anvil")
for drawing in qdg.drawings:

print(drawing)

You can get a list of all the drawing names using the drawing_names property of QuickDrawData.

from quickdraw import QuickDrawData

qd = QuickDrawData()
print(qd.drawing_names)

6 Chapter 2. Use

https://quickdraw.readthedocs.io/en/latest/api.html#quickdrawdatagroup
https://quickdraw.readthedocs.io/en/latest/api.html#quickdrawdatagroup
https://quickdraw.readthedocs.io/en/latest/api.html#quickdraw.QuickDrawDataGroup.drawings
https://quickdraw.readthedocs.io/en/latest/api.html#quickdraw.QuickDrawDataGroup.drawing_names
https://quickdraw.readthedocs.io/en/latest/api.html#quickdrawdata

CHAPTER 3

Examples

Code examples can be found in the quickdraw GitHub repository.

7

https://github.com/martinohanlon/quickdraw_python/tree/master/examples
https://github.com/martinohanlon/quickdraw_python

quickdraw Documentation, Release 1.0.0

8 Chapter 3. Examples

CHAPTER 4

Documentation

API documentation can be found at quickdraw.readthedocs.io

9

https://quickdraw.readthedocs.io/en/latest/api.html
https://quickdraw.readthedocs.io

quickdraw Documentation, Release 1.0.0

10 Chapter 4. Documentation

CHAPTER 5

Warning

The drawings have been moderated but there is no guarantee it’ll actually be a picture of what you are asking it for
(although in my experience they are)!

11

quickdraw Documentation, Release 1.0.0

12 Chapter 5. Warning

CHAPTER 6

Status

Stable.

Raise any issues in the github repository.

13

https://github.com/martinohanlon/quickdraw_python/issues
https://github.com/martinohanlon/quickdraw_python

quickdraw Documentation, Release 1.0.0

14 Chapter 6. Status

CHAPTER 7

Table of Contents

7.1 quickdraw API

7.1.1 QuickDrawData

class quickdraw.QuickDrawData(recognized=None, max_drawings=1000, re-
fresh_data=False, jit_loading=True, print_messages=True,
cache_dir=’./.quickdrawcache’)

Allows interaction with the Google Quick, Draw! data set, downloads Quick Draw data from https://storage.
googleapis.com/quickdraw_dataset/full/binary/ and loads it into memory for easy access and processing.

The following example will load the anvil drawings and get a single drawing:

from quickdraw import QuickDrawData

qd = QuickDrawData()

anvil = qd.get_drawing("anvil")
anvil.image.save("my_anvil.gif")

Parameters

• recognized (bool) – If True only recognized drawings will be loaded, if False only
unrecognized drawings will be loaded, if None (the default) both recognized and unrecog-
nized drawings will be loaded.

• max_drawings (int) – The maximum number of drawings to be loaded into memory,
defaults to 1000.

• refresh_data (bool) – If True forces data to be downloaded even if it has been down-
loaded before, defaults to False.

• jit_loading (bool) – If True (the default) only downloads and loads data into mem-
ory when it is required (jit = just in time). If False all drawings will be downloaded and
loaded into memory.

15

https://storage.googleapis.com/quickdraw_dataset/full/binary/
https://storage.googleapis.com/quickdraw_dataset/full/binary/

quickdraw Documentation, Release 1.0.0

• print_messages (bool) – If True (the default), status messages will be printed stating
when data is being downloaded or loaded.

• cache_dir (string) – Specify a cache directory to use when downloading data files,
defaults to ./.quickdrawcache.

get_drawing(name, index=None)
Get a drawing.

Returns an instance of QuickDrawing representing a single Quick, Draw drawing.

Parameters

• name (string) – The name of the drawing to get (anvil, ant, aircraft, etc).

• index (int) – The index of the drawing to get.

If None (the default) a random drawing will be returned.

get_drawing_group(name)
Get a group of drawings by name.

Returns an instance of QuickDrawDataGroup.

Parameters name (string) – The name of the drawings (anvil, ant, aircraft, etc).

load_all_drawings()
Loads (and downloads if required) all drawings into memory.

load_drawings(list_of_drawings)
Loads (and downloads if required) all drawings into memory.

Parameters list_of_drawings (list) – A list of the drawings to be loaded (anvil, ant,
aircraft, etc).

search_drawings(name, key_id=None, recognized=None, countrycode=None, timestamp=None)
Search the drawings.

Returns an list of QuickDrawing instances representing the matched drawings.

Note - search criteria are a compound.

Search for all the drawings with the countrycode “PL”

from quickdraw import QuickDrawDataGroup

anvils = QuickDrawDataGroup("anvil")
results = anvils.search_drawings(countrycode="PL")

Parameters

• name (string) – The name of the drawings (anvil, ant, aircraft, etc) to search.

• key_id (int) – The key_id to such for. If None (the default) the key_id is not used.

• recognized (bool) – To search for drawings which were recognized. If None (the
default) recognized is not used.

• countrycode (int) – To search for drawings which with the countrycode. If None
(the default) countrycode is not used.

• countrycode – To search for drawings which with the timestamp. If None (the
default) timestamp is not used.

16 Chapter 7. Table of Contents

quickdraw Documentation, Release 1.0.0

drawing_names
Returns a list of all the potential drawing names.

loaded_drawings
Returns a list of drawing which have been loaded into memory.

7.1.2 QuickDrawDataGroup

class quickdraw.QuickDrawDataGroup(name, recognized=None, max_drawings=1000,
refresh_data=False, print_messages=True,
cache_dir=’./.quickdrawcache’)

Allows interaction with a group of Quick, Draw! drawings.

The following example will load the ant group of drawings and get a single drawing:

from quickdraw import QuickDrawDataGroup

ants = QuickDrawDataGroup("ant")
ant = ants.get_drawing()
ant.image.save("my_ant.gif")

Parameters

• name (string) – The name of the drawings to be loaded (anvil, ant, aircraft, etc).

• recognized (bool) – If True only recognized drawings will be loaded, if False only
unrecognized drawings will be loaded, if None (the default) both recognized and unrecog-
nized drawings will be loaded.

• max_drawings (int) – The maximum number of drawings to be loaded into memory,
defaults to 1000.

• refresh_data (bool) – If True forces data to be downloaded even if it has been down-
loaded before, defaults to False.

• print_messages (bool) – If True (the default), status messages will be printed stating
when data is being downloaded or loaded.

• cache_dir (string) – Specify a cache directory to use when downloading data files,
defaults to ./.quickdrawcache.

get_drawing(index=None)
Get a drawing from this group.

Returns an instance of QuickDrawing representing a single Quick, Draw drawing.

Get a single anvil drawing:

from quickdraw import QuickDrawDataGroup

anvils = QuickDrawDataGroup("anvil")
anvil = anvils.get_drawing()

Parameters index (int) – The index of the drawing to get.

If None (the default) a random drawing will be returned.

7.1. quickdraw API 17

quickdraw Documentation, Release 1.0.0

search_drawings(key_id=None, recognized=None, countrycode=None, timestamp=None)
Searches the drawings in this group.

Returns an list of QuickDrawing instances representing the matched drawings.

Note - search criteria are a compound.

Search for all the drawings with the countrycode “PL”

from quickdraw import QuickDrawDataGroup

anvils = QuickDrawDataGroup("anvil")
results = anvils.search_drawings(countrycode="PL")

Parameters

• key_id (int) – The key_id to such for. If None (the default) the key_id is not used.

• recognized (bool) – To search for drawings which were recognized. If None (the
default) recognized is not used.

• countrycode (int) – To search for drawings which with the countrycode. If None
(the default) countrycode is not used.

• countrycode – To search for drawings which with the timestamp. If None (the
default) timestamp is not used.

drawing_count
Returns the number of drawings loaded.

drawings
An iterator of all the drawings loaded in this group. Returns a QuickDrawing object.

Load the anvil group of drawings and iterate through them:

from quickdraw import QuickDrawDataGroup

anvils = QuickDrawDataGroup("anvil")
for anvil in anvils.drawings:

print(anvil)

7.1.3 QuickDrawing

class quickdraw.QuickDrawing(name, drawing_data)
Represents a single Quick, Draw! drawing.

get_animation(stroke_color=(0, 0, 0), stroke_width=2, bg_color=(255, 255, 255))
Returns a QuickDrawAnimation instance representing the an animation of the QuickDrawing being
created.

Parameters

• stroke_color (int) – A list of RGB (red, green, blue) values for the stroke color,
defaults to (0,0,0).

• stroke_color – A width of the stroke, defaults to 2.

• bg_color (list) – A list of RGB (red, green, blue) values for the background color,
defaults to (255,255,255).

18 Chapter 7. Table of Contents

quickdraw Documentation, Release 1.0.0

get_image(stroke_color=(0, 0, 0), stroke_width=2, bg_color=(255, 255, 255))
Get a PIL Image object of the drawing.

Parameters

• stroke_color (int) – A list of RGB (red, green, blue) values for the stroke color,
defaults to (0,0,0).

• stroke_color – A width of the stroke, defaults to 2.

• bg_color (list) – A list of RGB (red, green, blue) values for the background color,
defaults to (255,255,255).

animation
Returns a QuickDrawAnimation instance representing the an animation of the QuickDrawing
on a white background with a black drawing. Alternative image parameters can be set using
get_animation().

To save the animation you would use the save method:

from quickdraw import QuickDrawData

qd = QuickDrawData()

anvil = qd.get_drawing("anvil")
anvil.animation.save("my_anvil_animation.gif")

countrycode
Returns the country code for the drawing.

image
Returns a PIL Image object of the drawing on a white background with a black drawing. Alternative image
parameters can be set using get_image().

To save the image you would use the save method:

from quickdraw import QuickDrawData

qd = QuickDrawData()

anvil = qd.get_drawing("anvil")
anvil.image.save("my_anvil.gif")

image_data
Returns the raw image data as list of strokes with a list of X co-ordinates and a list of Y co-ordinates.

Co-ordinates are aligned to the top-left hand corner with values from 0 to 255.

See https://github.com/googlecreativelab/quickdraw-dataset#simplified-drawing-files-ndjson for more in-
formation regarding how the data is represented.

key_id
Returns the id of the drawing.

name
Returns the name of the drawing (anvil, aircraft, ant, etc).

no_of_strokes
Returns the number of pen strokes used to create the drawing.

recognized
Returns a boolean representing whether the drawing was recognized.

7.1. quickdraw API 19

https://pillow.readthedocs.io/en/3.0.x/reference/Image.html
https://pillow.readthedocs.io/en/3.0.x/reference/Image.html
https://github.com/googlecreativelab/quickdraw-dataset#simplified-drawing-files-ndjson

quickdraw Documentation, Release 1.0.0

strokes
Returns a list of pen strokes containing a list of (x,y) coordinates which make up the drawing.

To iterate though the strokes data use:

from quickdraw import QuickDrawData

qd = QuickDrawData()

anvil = qd.get_drawing("anvil")
for stroke in anvil.strokes:

for x, y in stroke:
print("x={} y={}".format(x, y))

timestamp
Returns the time the drawing was created (in seconds since the epoch).

7.1.4 QuickDrawAnimation

class quickdraw.QuickDrawAnimation(quick_drawing, stroke_color, stroke_width, bg_color)
Represents an animation of a QuickDrawing.

While an instance can be created directly it is typically returned by QuickDrawing.get_animation()
or QuickDrawing.animation().

To save the animation you would use the save method:

from quickdraw import QuickDrawData

qd = QuickDrawData()

anvil = qd.get_drawing("anvil")
anvil.animation.save("my_anvil_animation.gif")

save(filename, frame_length=0.1, loop_times=0)
Save’s the animation to a given filename.

Parameters

• filename (string) – The filename or path to save the animation. The filetype must
be gif.

• frame_length (int) – The time in seconds between each frame, defaults to 0.1.

• loop_times (int) – The number of times the animation should loop. A value of 0 will
result in the animation looping forever. A value of None will result in the animation not
looping. The default is 0.

frames
Returns a list PIL Image objects of the animation.

7.2 Change log

7.2.1 1.0.0 - 2022-05-16

• Added QuickDrawAnimation

20 Chapter 7. Table of Contents

https://pillow.readthedocs.io/en/3.0.x/reference/Image.html

quickdraw Documentation, Release 1.0.0

• Made the project version 1.0.0 and set as Stable

7.2.2 0.2.0 - 2021-03-10

• Python 3.7+ compatibility fix

7.2.3 0.1.0

• Beta

• Bug fixes

• Additional properties methods and stuff

• Tests

7.2.4 0.0.1 > 0.0.4

• Alpha - setting up, working out the api, sorting out the bugs

7.2. Change log 21

quickdraw Documentation, Release 1.0.0

22 Chapter 7. Table of Contents

Python Module Index

q
quickdraw, 15

23

quickdraw Documentation, Release 1.0.0

24 Python Module Index

Index

A
animation (quickdraw.QuickDrawing attribute), 19

C
countrycode (quickdraw.QuickDrawing attribute), 19

D
drawing_count (quickdraw.QuickDrawDataGroup

attribute), 18
drawing_names (quickdraw.QuickDrawData at-

tribute), 16
drawings (quickdraw.QuickDrawDataGroup at-

tribute), 18

F
frames (quickdraw.QuickDrawAnimation attribute), 20

G
get_animation() (quickdraw.QuickDrawing

method), 18
get_drawing() (quickdraw.QuickDrawData

method), 16
get_drawing() (quickdraw.QuickDrawDataGroup

method), 17
get_drawing_group() (quickdraw.QuickDrawData

method), 16
get_image() (quickdraw.QuickDrawing method), 18

I
image (quickdraw.QuickDrawing attribute), 19
image_data (quickdraw.QuickDrawing attribute), 19

K
key_id (quickdraw.QuickDrawing attribute), 19

L
load_all_drawings() (quickdraw.QuickDrawData

method), 16

load_drawings() (quickdraw.QuickDrawData
method), 16

loaded_drawings (quickdraw.QuickDrawData at-
tribute), 17

N
name (quickdraw.QuickDrawing attribute), 19
no_of_strokes (quickdraw.QuickDrawing attribute),

19

Q
quickdraw (module), 15
QuickDrawAnimation (class in quickdraw), 20
QuickDrawData (class in quickdraw), 15
QuickDrawDataGroup (class in quickdraw), 17
QuickDrawing (class in quickdraw), 18

R
recognized (quickdraw.QuickDrawing attribute), 19

S
save() (quickdraw.QuickDrawAnimation method), 20
search_drawings() (quickdraw.QuickDrawData

method), 16
search_drawings() (quick-

draw.QuickDrawDataGroup method), 17
strokes (quickdraw.QuickDrawing attribute), 19

T
timestamp (quickdraw.QuickDrawing attribute), 20

25

	Getting started
	Use
	Examples
	Documentation
	Warning
	Status
	Table of Contents
	quickdraw API
	Change log

	Python Module Index
	Index

